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ABSTRACT: 
 
Most supervised image classification methods need pure pixels for training, which complicates training when pure pixels are 
scarce. In these cases, it can be difficult to obtain a sufficiently large number of representative training samples to accurately 
estimate the spectra of the classes. The direct use of ‘almost pure’ pixels is not advisable. These cause the estimated mean to be 
biased and the estimated variance to depend on the degree of occurrence of other classes, instead of on the natural variation in the 
spectrum of the class. The solution for the lack of pure training samples is to be found in the use of mixed pixels to estimate the 
spectra of pure classes.  
This article presents a method to estimate unbiased pure spectra out of mixed pixels using adjustment theory and probability model 
estimation. An advantage of such a fuzzy training method is that more pixels in the image can be used for training, which enables 
the use of heterogeneous areas for training or the random selection of training pixels. There are two conditions for this method. 
First, one needs to have estimates of the fractions of the classes in the mixed training samples. Secondly, the spectral values of the 
mixed pixels should be a linear combination of the spectra of the composing classes. 
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1. INTRODUCTION 

Training is the first step of a supervised image classification. 
The objective of the training is specifying the classes that need 
to be distinguished and providing the features of these classes. 
Usually, the class spectra cannot be taken from a library. For 
example, atmospheric conditions and the growing stadium of 
vegetation at the moment of image recording have a significant 
influence on the spectra. Therefore, representative pixels of 
each class need to be selected from the image itself as training 
samples, to estimate the spectra of the classes.  
 
Supervised image classification can be crisp or fuzzy. A crisp 
method classifies every pixel, mixed or not, always in one of 
the classes. When spatial variability is high, compared to the 
spatial resolution of the imagery, as it is often the case when 
monitoring natural vegetation, it is better not to be so strict and 
to allow pixels to be classified in more than one class at the 
same time. In this article a classification is called fuzzy if it 
classifies objects not just in one class, but to more or less 
degree in multiple classes, expressed in a value per class. This 
value can be a probability, a fraction or any other quantity. 
 
1.1 Motivation 

This article is a result of research in the use of probabilistic 
segmentation and fuzzy classification for imagery of natural 
vegetation (Lesparre, 2003; Gorte et al., 2003). Therefore, 
some of the motivation is based on aspects of natural 
vegetation or fuzzy classification. Nevertheless, the presented 
method is applicable for other purposes too. 
 
Most supervised image classification methods need pure pixels 
for training, which complicates training in cases that pure 
pixels are scarce, for example images of natural vegetation. In 

these cases, it can be difficult to obtain a sufficiently large 
number of representative training samples to accurately 
estimate the spectra of the classes. One of the possibilities to 
get around this problem is using ‘almost pure’ pixels for 
training. There are even methods to find the ‘purest’ pixels in 
an image, by seeking the extremes in the feature space, like 
the Pixel Purity Index (ENVI, 1999). However, the use of 
‘almost pure’ pixels is not advisable. These cause the 
estimated mean to be biased and the estimated variance to be 
influenced by the degree of occurrence of other classes, instead 
of to represent the natural variation in the spectrum of the 
class. For crisp classifications, one could argue that this is not 
so much of a problem, because for most pixels the most likely 
class will still be the right one. However, for a fuzzy 
classification one is seeking probabilities (or another fuzzy 
value) for each class. These will have a systematic error as a 
result of the not completely pure training pixels. 
 
Example: Suppose we wish to distinguish the classes wood 
and heath and the spectra of these classes both have the same 
variation and no correlation. For the training of the class heath 
we have 20 pure pixels at our disposal, but for the class wood 
we use 10 pure pixels and 10 pixels with 10% heath in it 
(figure 1). In this case the estimated variance (the ellipse in 
figure 1) of the class wood will be larger than the real variance 
(the circle). As a result of this, wood will be overrepresented 
in the classification. 
 
The solution for the lack of pure training samples is not to be 
found in the use of ‘almost pure’ pixels as pure ones, but in 
using mixed pixels to estimate the spectra of pure classes. This 
can be considered as fuzzy training. In the ideal case, training, 
classification and validation are all fuzzy (Foody, 1999). 
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Figure 1. Feature space with pure training samples of the 

class heath and only partly pure training samples 
for the class wood. 

 
The computed features in the training stadium of a maximum 
likelihood classification are for each class the mean value and 
the variance per spectral band and the correlation with other 
bands. A Gaussian distribution is assumed for this. How can 
these features be estimated using mixed pixels? Wang (1990) 
suggested computing a weighted mean and a weighted 
empirical (co)variance, using the fractions of the class as 
weight. However, this method gives biased estimates of the 
spectra of the pure classes (Eastman and Laney, 2002). 
Namely, the non-pure pixels pull the weighted mean, despite 
the lower weight, in the direction of the non-pure spectra. 
Another method to use mixed pixels as training samples is to 
train for each mixture proportion separately. However, this 
would require training samples for all the mixture proportions 
that need to be distinguished. For natural vegetation 
applications, this would require enormous amount of fieldwork 
to acquire the needed training samples. 
 
1.2 Aim 

This article presents a method to execute a maximum 
likelihood training, which estimates an unbiased mean and 
(co)variances of pure spectra using mixed pixels. The principle 
is explained in section 2.1. This is worked out in the sections 
2.2-2.4, using adjustment theory and probability model 
estimation.  
 
 

2. METHOD 

2.1 Principle 

To be able to use mixed pixels, a model is needed to relate the 
spectrum of a mixed pixel to the spectra of its comprising 
components. When linear mixing of the spectra is assumed, the 
value of a mixed pixel equals: 
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Where iSjBχ  =  value for spectral band j  of sample i  
 iSkCf  =  fraction of class k  in sample i  
 kCjBχ  =  mean value for spectral band j  of class k  
 K  =  the number of classes 
 

Note: The value iSjBχ  is element j  of the feature vector of 
sample i . A feature vector is a vector containing the spectral 
signature of a pixel. This is indicated with χ  (chi), the first 
character of the Greek word chroma, meaning colour.  
 
The sum of all fractions should equal 1, so: 
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Points in the feature space with different mixture proportions 
of two classes are situated on a straight line in between the two 
pure spectra. The position on this line is linear proportional to 
the fractions of the classes. This enables us to estimate the 
spectra of the pure classes using mixed pixels, provided that 
the mixture proportions are known. 
 
Example: Suppose we have two training pixels, one with 25% 
wood and 75% heath and one with 75% wood and 25% heath. 
If we draw a line in the feature space, from one to the other, 
and extend this line with half its length on both ends, we get 
estimates for samples of 100% wood and 100% heath 
(figure 2). 
 
 

 
Figure 2. Feature space with estimates of two pure spectra 

using two mixed pixels. 
 
In case of many training samples instead of two, these will 
never lie exactly on one line, resulting in an ambiguous 
solution. Using adjustment theory a least squares estimation of 
the pure spectra is obtained in section 2.2 (figure 3). For a 
maximum likelihood classification not only the mean values, 
but also the (co)variances of the pure spectra, are needed. To 
estimate the variances of the pure spectra, variance component 
model estimation is used in section 2.3. 
 
2.2 Least squares estimation of mean values 

To estimate the spectra of pure classes using mixed pixels 
least squares adjustment theory (Teunissen, 1999) can be used. 
To apply a least squares estimation, (1) and (2) need to be 
formulated as observation equations:  
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}E{ 1 iSCf  iSCf 1=  

  M  
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The observation equations (3) are of the form )(}E{ xAy = , 
where the observations ( y ) are the spectra of the training 
pixels and the fractions of the classes in the training pixels. 
The unknowns ( x ) are the spectra of the pure classes and the 
fractions of the classes in the training pixels. As these 
equations are non-linear, they need to be linearised to be able 
to perform the least squares estimation. The linearised 
equations are: 
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Here the observations are noted as oyyy −=∆  and the 
unknowns as oxxx −=∆ . The approximate values of the 
unknowns ( ox ) can be obtained, for instance, from the purest 
training samples. The approximate values of the observations 
( oy ) are obtained from the equation )( oo xAy = .  
 
Next, the linearised equations (4) can be put in matrix notation 

xAy ∆⋅=∆ }E{ . Then, the least squares estimates of the 
unknowns results from: 
 
 

yQAAQAxx yy
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Where x̂  =  least squares estimates of the unknowns ( x ) 
 yQ  =  covariance matrix of the observations ( y ) 
 
When the approximate values are not very accurate, it will be 
necessary to estimate the unknowns ( x̂ ) iteratively. By 
repeatedly using the result as a new approximate value, the 
estimates can be obtained as precise as desired. 
 
Example: For two classes, two spectral bands and five training 
pixels, the linearised model of observation equations is: 
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Figure 3. Feature space with least squares estimates of two 

pure spectra using five mixed pixels. The 
percentages are the fraction of one class. The 
fraction of the other class is 100% minus the given 
percentage. 

 
The above formulas assume that the sum of the observed 
fractions of the classes in each training sample is 1. Therefore, 
the fraction of the last class ( K ) of each sample is not an 
independent observation, and consequently it is not present in 
the observation equations. If the fractions are observed in a 
way that does not guarantee a sum of all fractions equal to 1, 
the fraction of the last class ( K ) is an independent observation 
too, but still not an independent unknown. In this case, one 
observation equation for each training pixel should be added: 
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The use of an unknown class is in theory possible. However, 
the fractions of this unknown class need to be estimated too, 
but the assumption of Gaussian distribution would probably 
not be justified for this class. 
 
The quality of the estimated mean values and class fractions 
( x̂ ) is given by the covariance matrix: 
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This covariance matrix should not be confused with the 
(co)variances estimated in the next section. 
 
2.3 Variance component model estimation of (co)variances 

To estimate the (co)variances of the spectra of pure classes 
using mixed pixels, the formula for the empirical (co)variance 
can no longer be used. In this case the more general formulas 
of the variance component model estimation have to be used, 
just like the formula for the mean needed to be replaced by the 
least squares estimation. Under certain circumstances the 
general formulas of the least squares estimation and the 
variance component model estimation lead to the simplified 
formulas of the mean and empirical (co)variance. 
 
For variance component model estimation (Teunissen and 
Amiri-Simkooei, 2006) the covariance matrix to be estimated 
is composed as the weighted sum of P  components, to 
estimate the factors of the components: 
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Where 2

pσ  =  unknown (co)variance factor p  
 pQ  =  cofactor matrix p  
 
The estimates of the (co)variance factors ( 2

pσ ) can be 
computed by: 
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Where σ  T22
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Because the covariance matrix ( yQ ) that is determined in (10) 
is also present in the formula itself, approximated values of the 
(co)variance factors are needed. The same covariance matrix as 
used in the least squares estimation can be used for this. An 
iterative computation should be performed to improve the 
approximated values until the desired precision is achieved. 
 
Model design: The components of the model (the cofactor 
matrices pQ ) can be chosen in many ways. However, not 
every possibility is useful. To estimate the covariance matrix 
of the pure spectra, the covariance matrix of the training 
samples should be expressed as a function of the covariance 
matrices of the pure spectra. Based on the model of linear 
mixing of spectra (formula 3), this is: 
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The correlation between the classes is neglected, just as it is in 
conventional training for a maximum likelihood classification. 
To estimate all parameters of a normal training for a maximum 
likelihood classification, for every spectral band of every class 
a variance should be estimated, as well as covariances for all 
combinations of spectral bands for every class. To complete the 
variance component model, at least one variance should be 
estimated for the observation of the fractions of the classes. 
This results in P  components: 
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Where K  =  the number of classes 
 J  =  the number of spectral bands 
 F  =  the number of components for the observation 

of the fractions of the classes 
 
Example: The variance component model in case of 2 classes 
and 2 spectral bands is: 
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If necessary, the variance component model could be improved 
by estimating more than one variance for the observations of 
the fractions. Correlation between these observations could be 
estimated too. 
 
Just as in conventional training for a maximum likelihood 
classification enough training samples should be available to 
estimate all (co)variances. A negative value for the estimate of 
a (co)variance factor can indicate a lack of training samples. 
The precision of the estimated (co)variance factors depends on 
the redundancy of the model, The quality of the estimated 
(co)variance factors is given by the covariance matrix: 
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2.4 Iterations 

The variance component model estimation of the (co)variances 
is executed after the least squares estimation of the mean 
values, since the result of the least squares estimation is 
needed for the variance component model estimation. Because 
the result of the least squares estimation also depends on the 
presumed variance model, an iterative computation should be 
performed. This is a third iteration on top of the iterations 
mentioned before. 
 
┌─┐Third iteration │ ▼ 
│ Iteration in estimation of mean values 
│ Iteration in estimation of (co)variances 
└─┘ 
 
 

3. EXPERIMENT 

The presented method, to execute a maximum likelihood 
training that estimates the pure spectra out of mixed pixels, 
was tested with an experiment. To get mixed pixels with 
known mixture proportions, an image and accompanying raster 
file with ground truth were resampled coarser. The used image 
is a part of a recording of the Landsat Thematic Mapper. This 
image with pixels of 30 by 30 meters covers a small part of the 
polder Flevoland around the village Biddinghuizen in the 
Netherlands (figure 4a). The spectral bands 3, 4 and 5 were 

used. For this experiment, only the three most common crops 
were considered: wheat, potatoes and sugar beet (figure 4b). 
 
 

  
Figure 4. a. Landsat image, bands 4 (red), 5 (green) and 3 

(blue); b. Raster file with ground truth, classes 
wheat (red), potatoes (green) and sugar beet (blue). 

 
The Landsat image as well as the raster file with ground truth 
was sub-sampled with a factor 8. Per area of 8 by 8 pixels, the 
mean value was computed for each spectral band of the image, 
resulting in a new image with three bands with pixels of 240 
by 240 meters (figure 5a). In the raster file with ground truth, 
the fractions of each class were computed for each area of 64 
pixels (figure 5b).  
 
 

  
Figure 5. a. Resampled Landsat image as if recorded with a 

sensor with coarser pixels; b. Resampled raster file 
with ground truth, resulting in area proportions of 
the three crops as red, green and blue. 

 
Because more classes than wheat, potatoes and sugar beet are 
present in the image, not all pixels are used for fuzzy training 
with the presented method. For conventional, crisp training 
however, even fewer pixels would be available. There are 243 
pixels in which the three classes cover over 90% (figure 6a) 
and only 79 pixels where one class covers 90%. Of these 243 
pixels, a subset of 121 pixels was used to test the presented 
training method. The results were compared with conventional 
training on a subset of the original image (figure 6b).  
 
 

  
Figure 6. a. Resampled pixels in which the three classes 

together cover 90%, half of these are used for fuzzy 
training with the presented method; 
b. Unresampled pixels used for conventional 
training. 

 
Comparison of the fuzzy method with the conventional crisp 
training showed similar mean values for the spectra of the 
classes. Covariance matrices of spectra are not so easy to 
compare, classification with the crisp and fuzzy spectra, 
however, both showed an overall accuracy of about 80%. 
Hence, it can be concluded that the principle of using mixed 
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pixels for the training of a maximum likelihood classification 
is proven to work. 
 
Further analysis of the results showed incidental negative 
estimates of fractions of classes (extreme case -0.9), probably 
as a result the presence of other classes than wheat, potatoes 
and sugar beet. Adaptation of the model to constrain positive 
fractions could be considered for further research. Next, the 
quality descriptions were examined, which indicated accurate 
estimation. The quality for the least squares estimation of the 
mean values, however, seemed a little to optimistic. Finally, 
the influence of the a priori values on the variance model was 
investigated. Because of the third iteration (section 2.4), the 
a priori values give negligible differences. However, this is 
only true as long as the a priori values are approximately right. 
Using a priori values with an error of a factor two causes the 
solution to diverge. As the resulting estimates are totally 
wrong when it happens, this is easily recognisable.  
 
 

4. DISCUSSION 

The experiment proved the functioning of the presented 
method. Whether it can actually give an improvement still has 
to be demonstrated in practice.  
 
An advantage of the method is that more pixels in the image 
can be used for training. This enables the use of heterogeneous 
areas for training or the random selection of training pixels, 
which will give more representative training samples, as 
selection of typical training samples will. 
 
Precise geo-referencing is very important as the in the field 
observed fractions of classes should match the training pixels 
in the image as good as possible. 
 
The mayor disadvantage of the presented method is that it is 
more complicated. Although it is easily programmable, more 
knowledge of the operator is needed. For example, the number 
of needed training samples for representative estimation is no 
longer constant, as it depends on the mixture proportions of the 
training pixels. Using ‘almost pure’ pixels would require less 
pixels then pixels in all mixture proportions. In the case that 
all training samples have almost exactly the same mixture 
proportion, the estimates will be very inaccurate. Therefore, 
the quality descriptions ( Q ) need to be observed watchfully. 
 
Error detection using the testing theory (Teunissen, 2000) can 
also be executed, to make sure potentially present errors and 
mistakes are detected and not influencing the estimates. 
However, this is true for conventional classification training 
too. 
 
 

5. CONCLUSIONS 

This article presented a method to execute training for 
maximum likelihood classification, which estimates unbiased 
pure spectra out of mixed pixels using adjustment theory and 
probability model estimation. An experiment proved the 
functioning of the presented method.  
 

More pixels in the image can be used for training with this 
method, which enables the use of heterogeneous areas for 
training or the random selection of training pixels. 
 
There are two conditions for the presented training method. 
First, one needs to have estimates of the fractions of the 
classes in the mixed training samples. Secondly, the spectral 
values of the mixed pixels should be a linear combination of 
the spectra of the composing classes. 
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